Sediment Quality Guidelines for Wetland Creation in San Francisco Bay

Stakeholder Workshop

DMMO

November 14, 2002

Time	Topic	Process	Presenter/Leader
1:30-1:35	Welcome to Workshop		Tom Gandesbery Coastal Conservancy
1:35-1:45	Review of purpose of workshop and desired outcomes	Presentation and Q&A	G & A Team Drew Carey
1:45-2:00	Sediment testing and screening guidelines – relevance to beneficial reuse	Presentation and Q&A	G & A Team Drew Carey
2:00-2:30	Evaluation procedures for assessment of guidelines – predictive accuracy	Presentation and Q&A	G & A Team Lorraine Read
2:30-2:40	Break		
2:40-2:50	Database content – proposed database for screening guidelines	Presentation and Q&A	G & A Team Peggy Myre
2:50-3:20	Application of screening guidelines to beneficial reuse – issue identification	Group discussion	G & A Team Drew Carey
3:20-3:30	Summarize project approach and record feedback from stakeholders	Group discussion and consensus	Drew Carey & DMMO Host

Goals of Workshop

- Stakeholder contribution to design of SQGs
- Review basis for project
- Review sediment testing and guidelines
- Review approaches to assessment
- Review data sources and limitations
- Identify issues and concerns
- Summarize feedback on approach

Project Basis

- Funding from Coastal Conservancy
- Evaluate SQG for wetland restoration and beneficial reuse based on regional data
- Review screening approaches
- Assemble and review potential database
- Present approach to DMMO and stakeholders
- Perform analysis and propose guidelines

Purpose of SQGs for Wetland Restoration

- Sediment Quality Guidelines = SQGs
- Protection of the marine/wetland environment
- Establish screening values to be used by DMMO when evaluating the suitability of dredged material for wetland restoration and beneficial reuse.
- To make appropriate use of dredged sediments in the creation of wetlands

Why are they necessary?

- Guidelines a goal of LTMS
- Proposed guidelines (RWQCB 1992 & 2000) defaulted to national guidelines & ambient
- Desire to establish guidelines based on SF Bay conditions
- Need guidance to help meet 40% beneficial reuse target (LTMS 40:40:20)
- Guidelines can help DMMO and applicants to focus on solutions for "problem" sediments

Beneficial Reuse

- Habitat development
 - Tidal wetlands
 - Cover assume contact with environment
 - Foundation assume no direct contact with environment
- Levee maintenance
- Construction fill
- Daily landfill cover

Sediment Testing and Screening Guidelines

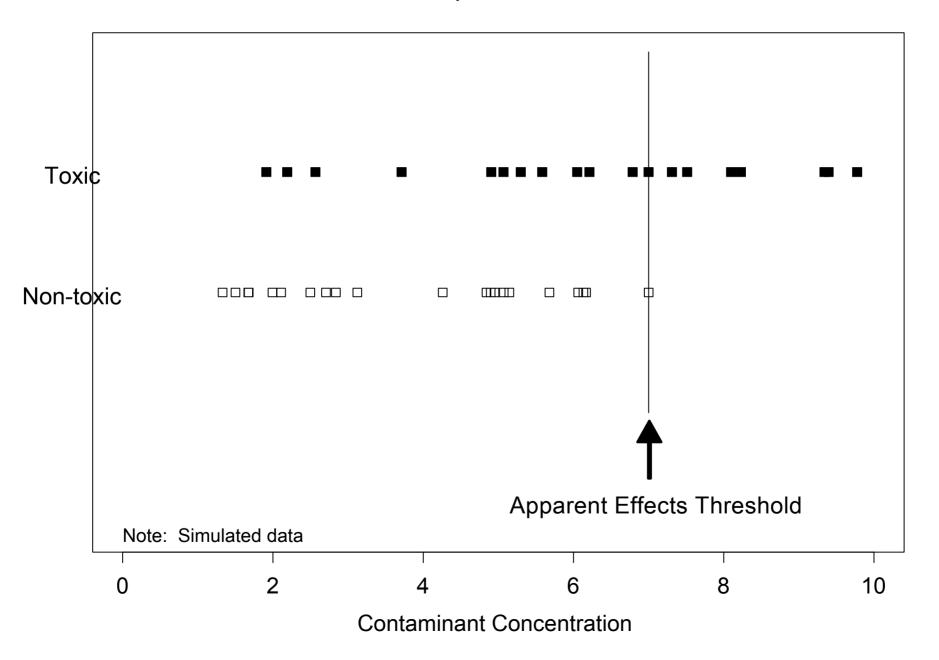
Germano and Associates Team

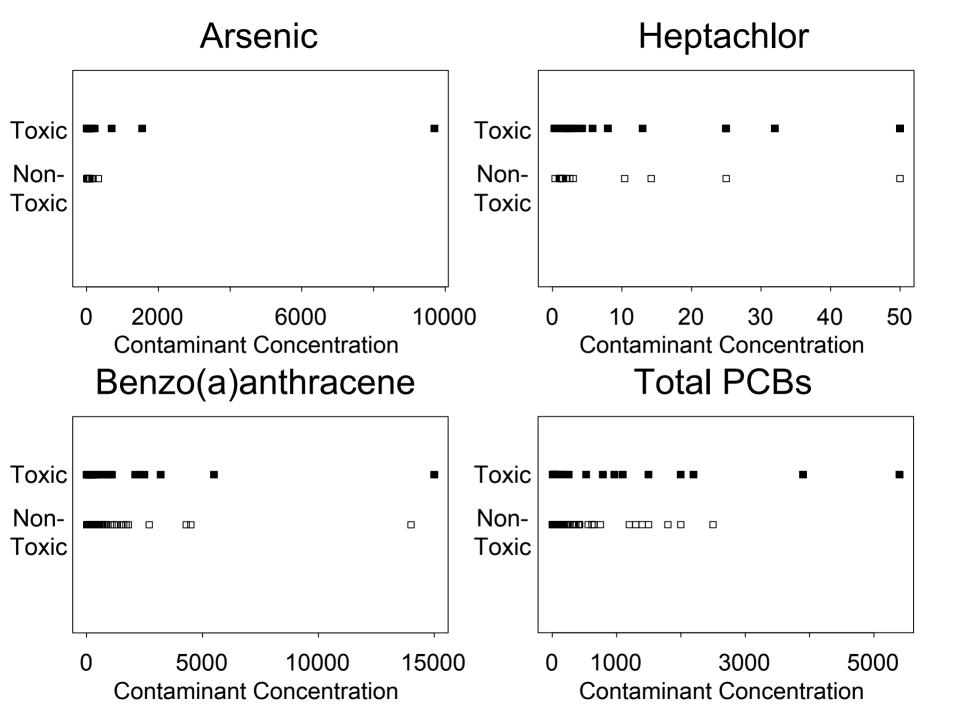
Testing and Screening Guidelines

Environment	Exposure	Chemistry test	Bioassay test(s)	Leachate chemistry	Screening 1) Chemistry 2) Toxicity 3)Leachate
Wetland surface (cover)	Direct exposure	Sediment chemistry	Two benthic species; three life history stages	None	1)Ambient or ER-Ls 2)no sig. Tox 3)not applicable
Foundation, Levees, and construction fill	Unlikely direct exposure; Leachate on-site	Sediment chemistry	None	Modified WET	1)ER-Ms or PELs 2) Not applicable 3) Basin plan WQO's
Landfill daily cover	No exposure	Testing and acceptability criteria specific to each landfill, contact individual landfills for requirements			
Dewatering discharges	Receiving waters	Elutriate chemistry	One species sediment elutriate	Not applicable	1)Basin plan WQO's 2) No sig. Tox. 3) Not applicable

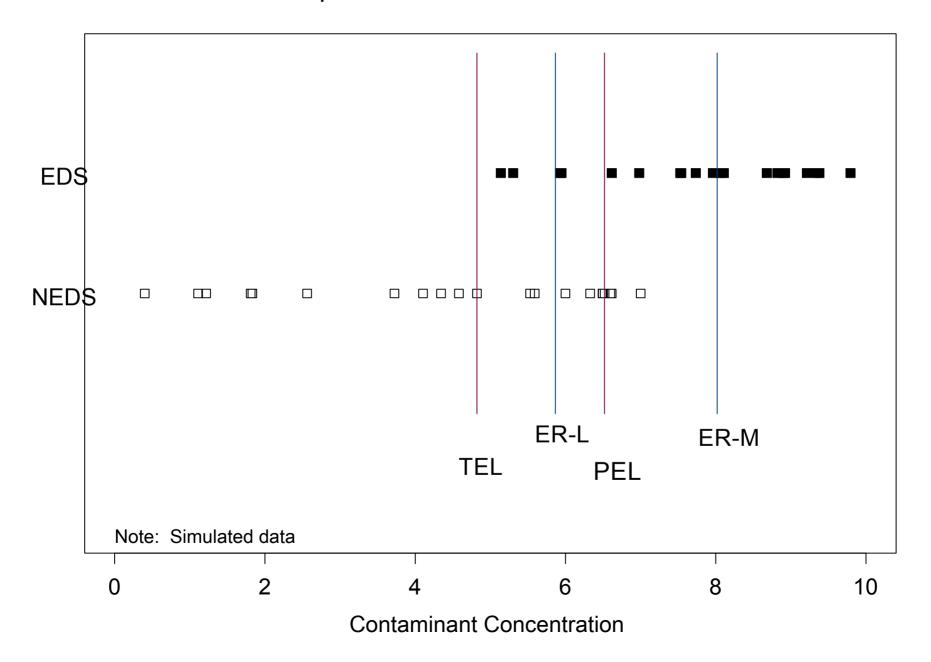
Sediment Testing

- Protocol: compare to reference sediments
 - Public Notice 01-01, 99-4
 - Inland Testing Manual, Green Book
- Sediment chemistry bulk sediment
- Acute toxicity 10 day amphipod test
- Other tests (e.g., elutriate) may be required but majority of data based on acute toxicity

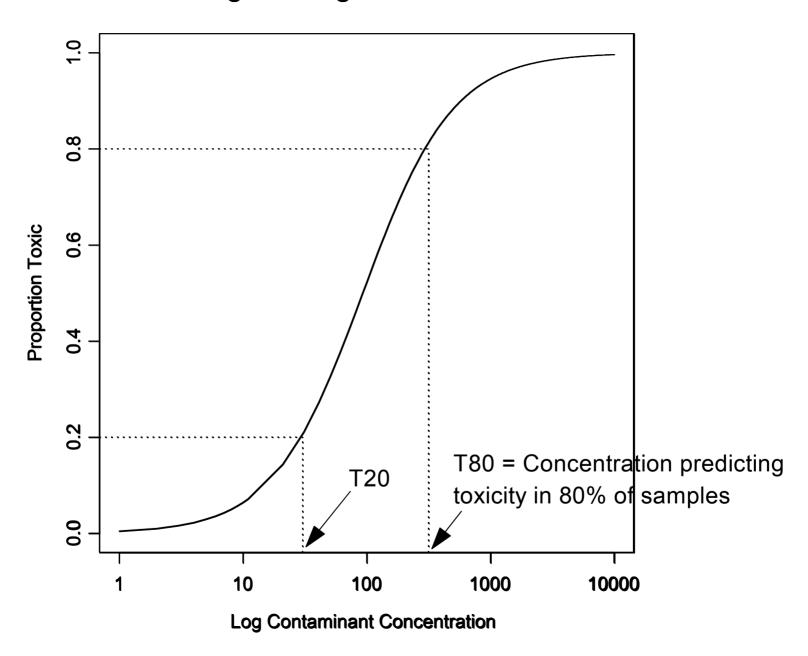

Empirical Approaches for Deriving SQGs


- Apparent Effects Thresholds (AETs)
- Screening and Maximum Levels (SL/ML)
 (PSDDA iteration of AETs)
- Effects Range Low and Median (ERL/ERM)
- Threshold and Probable Effects Levels

(TEL/PEL)


- Logistic Regression Models (LRM)
- Floating Percentile (FP)

Schematic Representation of AET



Schematic Representation of ERL/ERM and TEL/PEL

Logistic Regression Model

Limitations Common to all SQG Derivation Methods

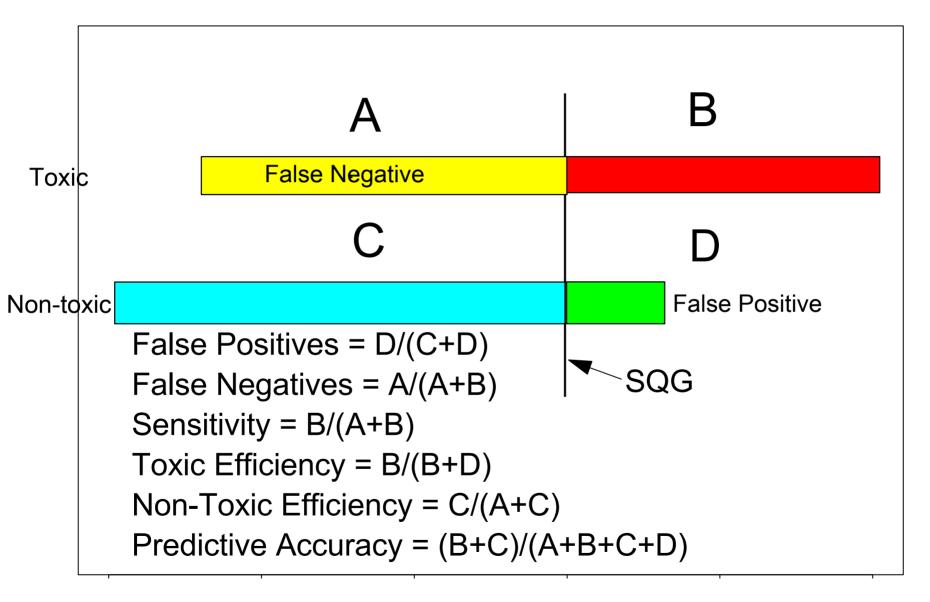
Chemical specific SQGs do not:

- address unanticipated chemicals or those for which values have not been developed
- address the interaction of chemicals (synergistic or antagonistic)
- necessarily bear any relevance for geographic regions or environments other than those for which they were developed
- produce consistent results

Evaluation of guidelines

Lorraine Read

Germano and Associates Team


Evaluation Approach

- Review Existing Guidelines
 - Determine set that can be evaluated
- Define Terms
- Review Evaluation Approach
 - Quantify False Negatives
 - Quantify False Positives
 - Quantify accuracy of prediction of lack of toxic responses
- Assess SQG against objectives
- Propose Wetland guidelines

Reliability Assessment Tools

- False positives: the percent of non-toxic samples that were predicted to be toxic
- False negatives: the percent of toxic samples that were <u>not</u> predicted to be toxic
- Sensitivity: the percent of toxic samples that were predicted to be toxic
- Efficiency: the percent of samples predicted to be toxic that were toxic (non-toxic predictions, also)
- Predictive Accuracy: the percent of samples that were correctly predicted (both toxic and non-toxic)

Schematic for Reliability Calculations

Contaminant Concentration

Definitions Required:

"Toxic"

Amphipod mortality endpoint, only
Statistical comparisons to Reference "Envelope"
(range of Reference area responses)

Predicted to be toxic

Exceeds guideline for at least one chemical or Mean SQG "quotient" > threshold *

Predicted to be non-toxic

No exceedances for any chemicals or Mean SQG "quotient" < threshold *

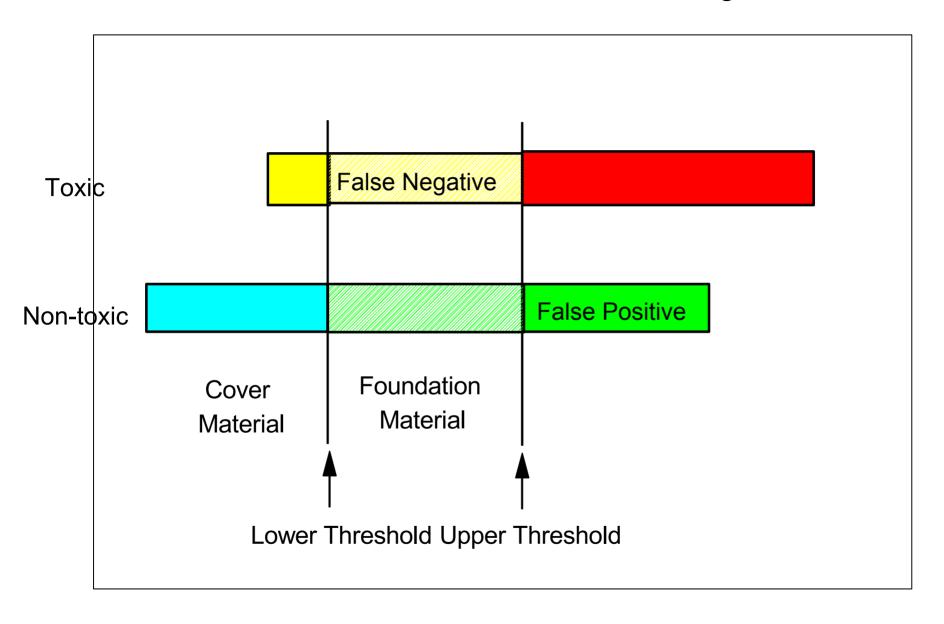
* Threshold selected to achieve defined predictive accuracy

Program objectives: to make *appropriate use* of dredged sediments in the creation of wetlands around San Francisco Bay

Definitions	Cover	Foundation	
"appropriate use"	Sediments are <i>predicted</i> to pose <i>minimal risk</i> to environment through direct exposure*	Sediments are <i>predicted</i> to pose a <i>limited risk</i> to the environment for possible routes of exposure*	
"predicted"	A specific fraction of the samples collected from dredging area have the mean SQG quotient below a lower threshold	A specific fraction of the samples collected from dredging area have the mean SQG quotient between a lower threshold and a upper threshold	
"minimal risk"	The prediction definition has been tested and meets a target false negative error rate (e.g., 10%)	N/A	
"limited risk"	N/A	The prediction definition has been tested and meets a target false negative error rate (e.g., 30%),	
*Amphipod toxicity is only surrogate for "risk to environment" because of data and method limitations		and exceedances of the upper threshold achieves a target sensitivity (e.g., 50%)	

Objectives and Definitions Differ for Cover and Foundation Materials

Cover: sediments predicted to pose *minimal risk* to benthic invertebrates through direct exposure.


 "Minimal risk" defined: the prediction definition has been tested and meets a low target false negative error rate (e.g., 10%)

Objectives and Definitions Differ for Cover and Foundation Materials

Foundation: sediments predicted to pose *limited risk* to environment for possible routes of exposure.

 "Limited risk" defined: the prediction definition has been tested and meets a moderate target false negative rate (e.g., 30%) and moderate sensitivity (e.g., 50%)

Schematic for Cover and Foundation Target Rates

Summary of Approach

Define:

- toxic/non-toxic status
- toxic/non-toxic predictions
- target reliability and error rates for cover and foundation materials separately
- Evaluate reliability of existing SQGs
 - compare to base rates (% of toxicity in Bay)
 - compare to target rates (predictive accuracy)
- Assess the need for site-specific SQGs

Site-Specific SQGs (if necessary)

- AETs or PAETs
- Floating Percentile
- Reference Envelope of Chemistry (random tolerance intervals for reference area concentrations)

(Smith and Riege, 1999. San Francisco Bay Sediment Criteria Project, Report to RWQCB)

Program objectives: to make *appropriate use* of dredged sediments in the creation of wetlands around San Francisco Bay

Definitions	Cover	Foundation	
"appropriate use"	Sediments are <i>predicted</i> to pose <i>minimal risk</i> to environment through direct exposure*	Sediments are <i>predicted</i> to pose a <i>limited risk</i> to the environment for possible routes of exposure*	
"predicted"	A specific fraction of the samples collected from dredging area have the mean SQG quotient below a lower threshold	A specific fraction of the samples collected from dredging area have the mean SQG quotient between a lower threshold and a upper threshold	
"minimal risk"	The prediction definition has been tested and meets a target false negative error rate (e.g., 10%)	N/A	
"limited risk"	N/A	The prediction definition has been tested and meets a target false negative error rate (e.g., 30%),	
*Amphipod toxicity is only surrogate for "risk to environment" because of data and method limitations		and exceedances of the upper threshold achieves a target sensitivity (e.g., 50%)	

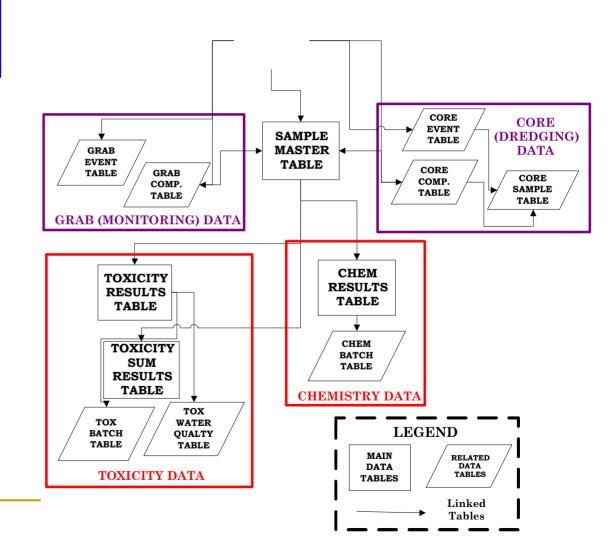
Database Content

Peggy Myre Germano and Associates Team

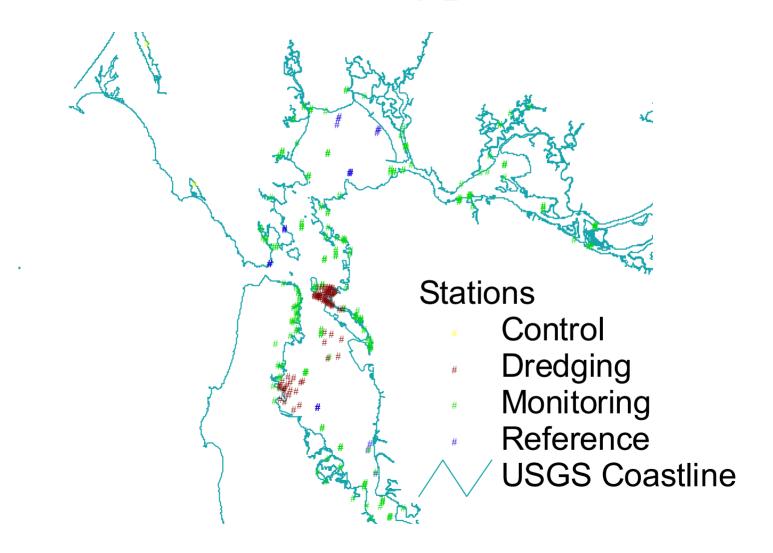
Database Content

- 623 Paired Sediment Chemistry/Bioassay Samples (to date)
- Dredging and Monitoring Data
 - >900 Monitoring Samples (BPTCP/RMP)
 - >200 Dredging Samples
- Data
 - Almost all have TOC and grain size
 - Include reference area data

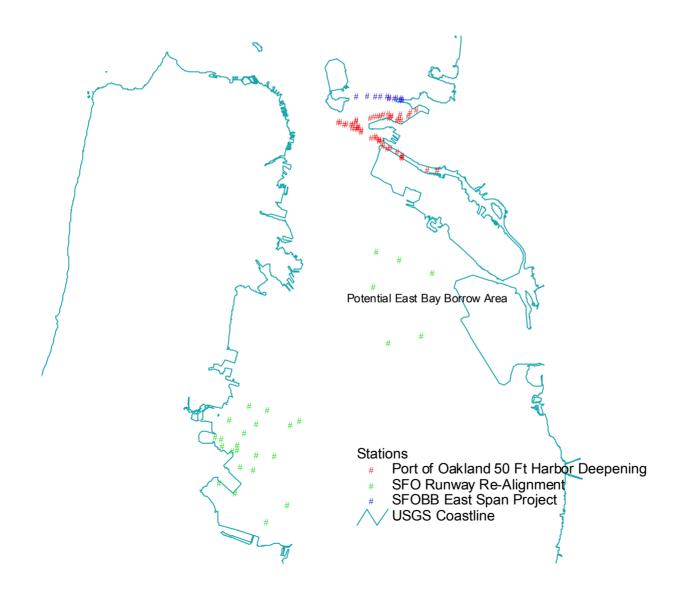
Data Content, continued


- Sediment Chemistry Data
 - PAHs, Pesticides
 - TBTs, Metals
 - PCBs (both congeners and aroclors)
- Bioassay Tests
 - Elutriate
 - Pore Water
 - Sediment will use acute toxicity results

Database Struc


- Monitoring Data
- Dredging Project Data

TABLES


- STUDY
- ☐ STATION
- ☐ SAMPLING
- □ DATA

Station Types

Dredging Studies

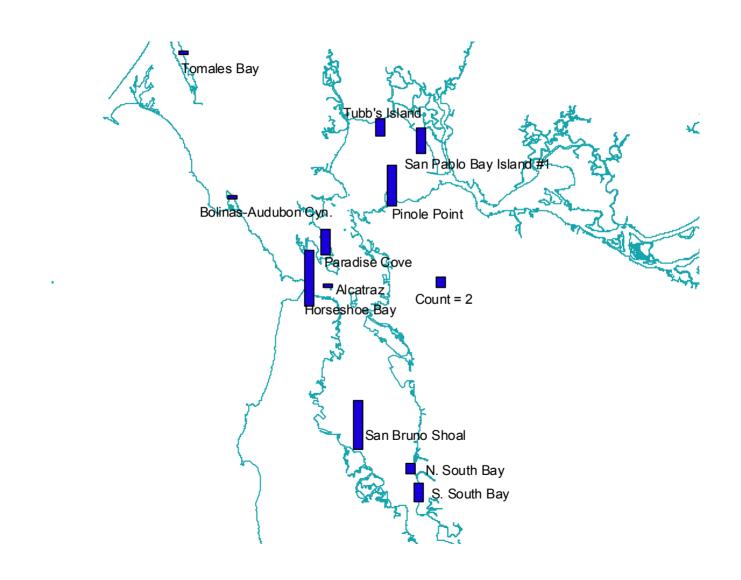
Summary of Amphipod Data

Study Name	Station	Ampelisca	Eohaustorius	Rhepoxynius
Study Name	Type	abdita	estuarius	abronius
BPTCP 1994/95 Reference Site Survey	Monitoring	3	3	
	Reference	43	48	
BPTCP 1995 Screening	Monitoring		86	
	Reference		4	
BPTCP 1997 Confirmation	Monitoring		23	
	Reference		2	
BPTCP 1997 Screening (Stege Marsh)	Monitoring		7	
RMP 1993 Regional Monitoring Program	Monitoring		14	
	Reference		2	
RMP 1994 Regional Monitoring Program	Monitoring		18	
	Reference		4	
RMP 1995 Regional Monitoring Program	Monitoring		19	
	Reference		4	
RMP 1996 Regional Monitoring Program	Monitoring		22	
	Reference		4	
RMP 1997 Regional Monitoring Program	Monitoring		24	
	Reference		4	
RMP 1998 Regional Monitoring Program	Monitoring		25	
	Reference		4	
RMP 1999 Regional Monitoring Program	Monitoring		12	
	Reference		2	
Port of Oakland 50 Ft Harbor Deepening	Dredging	67		
SFO Runway Re-Alignment	Dredging	50	55	
	Reference	15	18	
SFOBB East Span Project	Dredging	12		
	Reference	4		
USACE San Pablo Reference Area Data	Reference			3
Total Number of Amphipod Samp	les	194	404	3

^{*}Excludes SF-DODS

Determination of Toxicity

- Comparison to published reference values
 - Alcatraz Environs
- Comparison to reference, batch-specific
- Comparison to negative control
- Comparison to defined threshold
 - Thursby et al.
- Comparison to reference envelope (tolerance limits)
 - Hunt et al. 1998


Advantages of the Reference Envelope Approach

- Precedence in the region
 - Tolerance limits developed in BPTCP Hunt et al.,
 1998 study
- Sufficient data
- Allows stratification by grain size
- Minimizes influence of spatial and temporal variation

Reference Issues

- Selection of appropriate reference areas
- Screening data for inappropriate chemistry values
 - Comparison to guideline quotient means
 - Removal of outliers
- Screen data by quality control
 - Control response
 - Water quality
 - Confounding factors

Reference Station Visits

Reference Area Data

- Reference area definition
 - Minimal impact from anthropogenic activities
 - Similar physical properties to samples under consideration
- Data
 - BPTCP reference area surveys (94-95)
 - RMP (selected stations)
 - Dredging studies

Reference Area Toxicity Samples

Reference Area	Ampelisca abdita	Eohaustorius estuarius	Rhepoxynius abronius
Alcatraz	1		
San Pablo Bay Island #1	9	11	3
Bolinas-Audubon Cyn.	3	4	
Horseshoe Bay		11	
N. South Bay	3	5	
Paradise Cove	10	12	
Pinole Point		4	
S. South Bay	8	11	
San Bruno Shoal		9	
San Pablo Bay Island #1	9	11	
SF-DODS	6	6	
Tomales Bay	7	7	
Tubb's Island	15	16	
Total Number of Samples	71	107	3

Additional concerns

- Are stakeholder interests represented?
- Is it clear how guidelines would be used?
- What is relationship to statewide guidelines?
- Potential limitations on project and results